Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \begin{cases} x & if \ x \in Q \\ 0 & if \ x \in Q^c \end{cases}$

Prove that f is continuous only at a = 0

Proof:

Let $\epsilon > 0$ be given

Let us take $\delta = \epsilon$

For every $x \in \mathbb{R}$ with $|x - 0| < \delta$

$$|f(x) - f(0)| = |f(x)| \le |x| < \delta = \epsilon$$

$$\therefore$$
 f is continuous at $a = 0$.

Let $a \neq 0 \Longrightarrow |a| > 0$

Suppose f is continuous at a

```
Let \epsilon = |a| clearly \epsilon > 0
```

$$\Rightarrow \exists \delta > 0 \text{ such that } x \in \mathbb{R}, |x - a| < \delta \Rightarrow |f(x) - f(a)| < |a| \quad \dots \dots (1)$$

Let $a \in Q$

Let us choose
$$x \in Q^c$$
 such that $|x - a| < \delta$
 $\Rightarrow |f(x) - f(a)| < |a|$ (By (1))
 $\Rightarrow |0 - a| < |a|$
i.e., $|a| < |a|$
Which is $\Rightarrow \Leftarrow$

Let $a \in Q^c$ and a > 0

Let us choose $x \in Q$ such that $a < x < a + \delta$

$$\Rightarrow |x - a| < \delta$$

$$\Rightarrow |f(x) - f(a)| < |a| \quad (By (1))$$

$$\Rightarrow |x - 0| < |a|$$

i.e., $|x| < |a|$
Which is $\Rightarrow \Leftarrow$ that $0 < a < x$

Let us choose $x \in Q$ such that $a - \delta < x < a$

$$\Rightarrow |x - a| < \delta \text{ and } 0 < |a| < |x|$$
$$\Rightarrow |f(x) - f(a)| < |a| \qquad (By (1))$$
$$\Rightarrow |x - 0| < |a|$$
$$i.e., |x| < |a|$$

Which is $\Rightarrow \Leftarrow$ that 0 < |a| < |x|

 $\therefore f$ is not continuous at any $a \neq 0$.

Hence proved.